

ORAL PRESENTATION

Erythromycin induced neuroprotection during prolonged deep hypothermic circulatory arrest in an acute porcine model

C Koutsogiannidis^{1*}, F Ampatzidou¹, O Ananiadou¹, K Diplaris¹, T Troupis², A Charchanti², G Drossos¹, E Johnson²

From 23rd World Congress of the World Society of Cardio-Thoracic Surgeons Split, Croatia. 12-15 September 2013

Background

The present study assesses whether preconditioning with erythromycin can improve neuronal viability in the neocortex following deep hypothermic circulatory arrest (DHCA) in the porcine model.

Methods

Piglets were treated with erythromycin (25 mg/kg, iv) (n = 8) or vehicle (n = 6) and subjected to 75 minutes of DHCA at 18°C, 12 hours after pretreatment. Three served as normal controls. After gradual rewarming, treatment animals were sacrificed and brains were perfusion-fixed and cryopreserved. Motor cortex was dissected from the left hemisphere and paraffin embedded for histologic staining with hematoxylin and eosin (HE). To assess neuronal damage, HE-stained paraffin sections (10 μ m) were examined by light microscopic examination at x400 magnification. Layer V of the motor cortex was counted. Neuronal injury was recorded when there was evidence of eosinophilic cytoplasm, cytoplasmic vacuolation, cell body shrinkage or nuclear pyknosis. Neuronal injury was scored on a scale of 0-5.

Results

The peri-operative physiological variables did show significant variations with erythromycin drug treatment. The motor cortex from piglets pretreated with vehicle undergoing DHCA showed diffuse edema. Neurons showed a diffuse loss of Nissl substance, shrinkage of the perikaryon, and nuclear pyknosis with a mean neuronal injury score of 3.74 + 1.47. Neuronal injury in the motor

¹Cardiothoracic Surgery Department, General Hospital "G. Papanikolaou", Thessaloniki, Greece

Conclusion

Pharmacologic preconditioning with erythromycin significantly improved neuronal viability in the motor neocortex of piglets undergoing HCA at 18°C. These findings suggest a potential clinical strategy of preemptive neuroprotection.

Authors' details

¹Cardiothoracic Surgery Department, General Hospital "G. Papanikolaou", Thessaloniki, Greece. ²Department of Anatomy, University of Athens Medical School, Athens, Greece.

Published: 11 September 2013

doi:10.1186/1749-8090-8-S1-O24 Cite this article as: Koutsogiannidis *et al.*: Erythromycin induced neuroprotection during prolonged deep hypothermic circulatory arrest in an acute porcine model. *Journal of Cardiothoracic Surgery* 2013 8(Suppl 1):O24.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Koutsogiannidis et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: harisdoc76@yahoo.gr

Full list of author information is available at the end of the article