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Abstract
Objective This study aimed to develop a prognostic cell death index (CDI) based on the expression of genes 
related with various types of programmed cell death (PCD), and to assess its clinical relevance in lung squamous cell 
carcinoma (LUSC).

Methods PCD-related genes were gathered and analyzed in silico using the transcriptomic data from the LUSC 
cohorts of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Differentially 
expressed PCD genes were analyzed, and a prognostic model was subsequently constructed. CDI scores were 
calculated for each patient, and their correlations with clinical features, survival outcomes, tumor mutation burden, 
gene clusters, and tumor microenvironment were investigated. Unsupervised consensus clustering was performed 
based on CDI model genes. Furthermore, the correlation of CDI for sensitivity of targeted drugs, chemotherapy 
efficacy, and immunotherapy responses was assessed.

Results Based on 351 differentially expressed PCD genes in LUSC, a CDI signature comprising FGA, GAB2, JUN, 
and CDKN2A was identified. High CDI scores were significantly associated with poor survival outcomes (p < 0.05). 
Unsupervised clustering revealed three distinct patient subsets with varying survival rates. CDKN2A exhibited 
significantly different mutation patterns between patients with high and low CDI scores (p < 0.01). High CDI scores 
were also linked to increased immune cell infiltration of specific subsets and altered expression of immune-related 
genes. Patients with high-CDI showed reduced sensitivity to several chemotherapeutic drugs and a higher Tumor 
Immune Dysfunction and Exclusion (TIDE) score, indicating potential resistance to immunotherapy.

Conclusion The CDI signature based on PCD genes offers valuable prognostic insights into LUSC, reflecting 
molecular heterogeneity, immune microenvironment associations, and potential therapeutic challenges. The CDI 
holds potential clinical utility in predicting treatment responses and guiding the selection of appropriate therapies for 
patients with LUSC. Future studies are warranted to further validate the prognostic value of CDI in combination with 
clinical factors and to explore its application across diverse patient cohorts.

Keywords Biomarker, Drug resistance, Immunotherapy resistance, Lung squamous cell carcinoma, Programmed cell 
death, Cell death index, Prognosis, Immunotherapy

Characterization of prognostic signature 
related with twelve types of programmed cell 
death in lung squamous cell carcinoma
Saiyu Li1, Bing Ding1 and Duanli Weng1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13019-024-03039-5&domain=pdf&date_stamp=2024-9-26


Page 2 of 14Li et al. Journal of Cardiothoracic Surgery          (2024) 19:569 

Introduction
Lung cancer is one of the most prevalent malignancies 
and a leading cause of cancer-related death worldwide 
[1, 2], yet its pathogenesis has not been fully clarified. 
Lung cancer is traditionally classified into two primary 
subtypes: small- (SCLC) and non-small-cell lung cancer 
(NSCLC), with the latter constituting approximately 85% 
of all cases. Only 24% of lung cancers are diagnosed at 
a localized stage, where the 5-year survival rate is 60%, 
while the overall 5-year survival rate for NSCLC is merely 
26% [3]. The survival rate of lung cancer has been signifi-
cantly improved in recent decades, with the pace accel-
erating attributing to remarkable advances in NSCLC 
treatment [4]. The treatment of NSCLC has evolved from 
the empirical use of cytotoxic regimens to the develop-
ment of efficient and well-tolerated drugs targeting spe-
cific molecular subtypes [5]. However, the prognosis is 
still limited in some patients with NSCLC who are partic-
ularly resistant to chemotherapy or molecular targeting 
drugs [6]. The mechanism of drug resistance in NSCLC 
remains to be elucidated.

Programmed cell death (PCD) is a natural biological 
procedure and plays a vital role in both health and dis-
ease. PCD is essential for growth and development, as 
well as serving as a fundamental process for the reju-
venation of senescent cells. However, under certain 
circumstances, it can also facilitate pathological condi-
tions. Thus, PCD is considered as a “double-edge sword,” 
playing critical role in both organism homeostasis and 
pathogenesis. Recent evidence has revealed the signifi-
cant effect of various types of PCD including apoptosis, 
necroptosis, ferroptosis, lysosome-dependent cell death, 
parthanatos, autophagy-dependent cell death, pyroptosis, 
netotic cell death, entotic cell death, oxeiptosis, and alka-
liptosis [7–9]. For instance, necroptosis is a novel form 
of cell death that features morphological characteristics 
of necrosis as well as tight regulation [10]. Alkaliptosis 
is another type of PCD that is modulated by intracellu-
lar alkalinization [11]. While oxeiptosis utilizes the ROS 
sensing capabilities of KEAP1 to trigger a cell death pro-
cess, which has recently been identified as a specific sig-
naling pathway and is possibly to execute multiple PCD 
pathways together [12].

Programmed cell death (PCD) mechanisms play a 
crucial role in the pathogenesis of LUSC. Aberrations 
in these signaling pathways contribute to oncogenesis, 
tumor progression, and therapeutic resistance. In malig-
nant cells, apoptotic mechanisms are often impaired, 
resulting in uncontrolled cellular proliferation and sur-
vival. The dysregulation of key apoptotic regulators such 
as p53, Bcl-2 family proteins, caspases, and inhibitors 
of apoptosis proteins (IAPs) is critically associated with 
lung cancer progression [13]. Research indicates that 
the abnormal expression of anti-apoptotic proteins such 

as Bcl-2 and Bcl-xL contributes to resistance against 
therapies designed to induce apoptosis in lung cancer 
[14]. Therapeutically targeting apoptosis pathways, using 
methods like BH3 mimetics or caspase activators, shows 
great potential in lung cancer treatment [15]. Necropto-
sis, another form of programmed cell death character-
ized by necrosis, is also gaining attention in lung cancer 
research. Though its role is less established compared 
to apoptosis and autophagy, emerging data suggest that 
necroptosis may play a part in lung cancer develop-
ment, with a focus on crucial regulators like receptor-
interacting protein kinase 3 (RIPK3). For instance, it was 
observed that low-level expression levels of the necrop-
tosis markers RIPK3 and PELI1 are associated with an 
increased risk of mortality in patients with LUSC who 
underwent surgical tumor resection [16]. Autophagy 
plays a paradoxical role in lung cancer, functioning as 
both a tumor suppressor and a facilitator of tumor pro-
gression [17]. When autophagy is dysregulated, it sup-
ports lung cancer development by enhancing cell survival 
during stress and promoting tumor proliferation [18]. 
The relationship between autophagy and apoptosis in 
lung cancer cells is intricate, involving both cooperative 
and opposing interactions [19]. Targeting autophagic 
flux through pharmacological agents or genetic modi-
fication represents a promising strategy for lung cancer 
treatment. The autophagy-dependent cell death can be 
triggered by the interaction with RRM2 downregulation 
and further participates in the resistance to chemothera-
peutic reagents such as gemcitabine in LUSC cells [20]. 
However, a comprehensive exploration of the associa-
tion between multiple PCD patterns and LUSC remains 
elusive, and the specific roles of PCD in LUSC have been 
underexplored. Therefore, in the current study, we con-
ducted array-based analysis to identify genes associated 
with survival for prognostic prediction aimed at guiding 
tailored treatments. In addition, this research may assist 
in determining appropriate therapeutic regimens for 
LUSC.

Methods
Study design
We compiled the PCD related genes from previous lit-
erature [21]. The PCD gene were then utilized for in 
silico analysis. The genomic expression patterns of 
LUSC versus normal lung tissue in The Cancer Genome 
Atlas (TCGA) database was explored, and differentially 
expressed genes (DEGs) were identified. The LUSC 
cohort in TCGA database was used for prognostic model 
construction via Lasso regression. The prognostic PCD 
signature was identified and a cell death index (CDI) 
calculation index was obtained. The transcriptomic data 
from the LUSC cohort in the Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) database was then used 
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for external validation. The CDI score for each TCGA-
LUSC patient was calculated. The correlations of CDI 
with clinical feature, survival outcomes, tumor mutation 
burden, gene cluster, tumor microenvironment and drug 
sensitivity were further explored.

Data processing and identification of DEGs between LUSC 
and normal lung tissue
The gene expression profiling data and clinical features of 
patients with LUSC in TCGA database were accessed via 
the Genomic Data Commons (GDC) data portal (https://
portal.gdc.cancer.gov). The transcriptome profiling data 
from the TCGA-LUSC cohort were processed and nor-
malized with the “DESeq2” package in R software. We 
further performed differentiation analysis for the expres-
sion of tested genes between the normal and LUSC 
samples by “DESeq2” package in R software. The PCD 
genes with |log2(fold change (FC))| > 1.0 and adjusted 
p value < 0.05 were considered as DEGs. The heatmap 
and volcano plots were generated to visualize these dif-
ferentially expressed PCD genes by using the “ggplot2” 
package and “pheatmap” package in R software, respec-
tively. Single-cell RNA sequencing data was obtained 
from GSE200972, which includes tumor RNA single-
cell sequencing data for lung squamous cell carcinoma 
(LUSC). The single-cell sequencing data was processed 
using the Seurat package in R, and cell cluster annotation 
was performed using SingleR. Gene expression within 
different cell clusters was explored and compared.

Gene function enrichment analysis
Database for Annotation, Visualization and Integrated 
Discovery (DAVID, https://david.ncifcrf.gov/), an online 
tool that provided a comprehensive set of functional 
annotation was used to elucidate the biological signifi-
cance of the identified DEGs. The enriched biological 
themes, particularly gene ontology (GO) terms as well 
as Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway was analysed and further visualized by using the 
“ggplot2” package in R software.

Identification of prognostic PCD signature in LUSC
Univariate COX regression analysis was conducted in the 
TCGA-LUSC cohort to identify the PCD genes that were 
significant associated with survival in LUSC (P < 0.05). 
Then, LASSO penalty analysis was conducted to shrink 
the overfitting by using “glmnet” package in R software. 
For the LASSO regression, we used a random seed of 
123 and performed 10-fold cross-validation. Since our 
study focuses on time-to-event outcomes, we set the 
model parameter family to “cox”. After cross-validation, 
we selected the λ value of “lambda.min”, and the variables 
with coefficients that were not shrunk to zero were used 
for subsequent COX modeling. Finally, to obtain a novel 

prognostic PCD signature, a multivariate COX regression 
was analyzed via a stepwise process utilizing the “step” 
function from the “rms” package in R software. We set 
the parameter “direction” to “both”, and the final model 
was obtained based on stepwise selection using the 
Akaike Information Criterion. The hazard ratio (HR) for 
each PCD signature model gene was illustrated in a for-
est plot by using the “survminer” package in R software. 
The CDI for each LUSC patient was calculated accord-
ing to the expression level of PCD model genes using the 
following formula: CDI score = coefficient × (PCD gene-1 
level) + coefficient × (PCD gene-2 level) + …… + coeffi-
cient × (PCD gene-n level).

Gene set variation analysis (GSVA) analysis in high- and 
low-CDI patients
The patients TCGA-LUSC cohort were divided into 
high- and low-CDI groups according to the median CDI 
score of the entire cohort. Differences in biological func-
tions of the two groups were evaluated by GSVA method 
through the “c2.cp.reactome.v7.4.symbols.gmt” database, 
and “GSVA” and “GSEABase” packages in R software. 
The ridge plot was generated using the “ggplot2” and 
“ggridges” packages in R software.

Assessment of the prognostic performance of CDI
The relationship of survival status of TCGA-LUSC 
patients with CDI was evaluated by comparing the 
Kaplan-Meier curves between high- and low-CDI groups 
using the “survminer” package in R. ROC (receiver oper-
ating characteristic) curves and calibration curves at 1-, 
3- and 5-year were generated to assess the accuracy of 
the CDI-predicted survival by using “pROC”, “timeROC” 
and “rms” packages in R. The predictive performance of 
CDI was further validated using the transcriptomic data 
from the CPTAC -LUSC cohort employing the same 
methodologies.

Unsupervised consensus clustering
Based on the expression level of CDI model genes, con-
sensus clustering analysis was conducted to identify 
distinct subsets of LUSC by using the “ConsensusClus-
terPlus” package in R. The distribution of survival status 
and CDI in the calculated PCD clusters were visualized 
by the “ggalluvial” and “ggplot2” packages in R software.

PCD genes mutation associated with CDI
The tumor mutation burden (TMB) data of the TCGA-
LUSC cohort were obtained through the GDC data 
portal. The tumor mutation data was processed with 
“maftools” package in R. The most significantly differ-
entially mutated PCD genes were identified and pre-
sented in a forest plot using the “forestPlot” function in 
“maftools” package in R. The mutation status of the PCD 
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model genes was further assessed by using the “coOnco-
plot” function in “maftools” package in R. Besides, more 
detailed information of the PCD model genes such as the 
location of the mutation on the gene segment was shown 
via lollipop plot using the “lollipopPlot2” function in 
“maftools” package in R.

The immune microenvironment in LUSC correlated with 
CDI
The immune related gene set, immune checkpoint gene 
set, HLA gene set were sourced from previous publica-
tion [22]. The prediction of immune infiltration in the 
LUSC tumor microenvironment was conducted using 
the CIBERSORT tool (https://cibersortx.stanford.edu/). 
There were a total of 22 types of immune infiltration 
cells analysed, including DC cells, M0/M1/M2 macro-
phages, T cells, B cells, etc. The correlation between these 
immune cells with CDI score was also examined.

Prediction of targeted drugs, chemotherapy sensitivity, 
and immunotherapy response correlated with CDI score
The sensitivity of targeted drugs and chemotherapeutic 
drugs was predicted based on the gene expression profile 
of each LUSC patient using the “oncoPredict” package in 
R. Inhibitory concentration (IC50) values of these drugs 
were calculated. The response to immunotherapy was 
estimated through the Tumor Immune Dysfunction and 
Exclusion (TIDE, https://tide.dfci.harvard.edu) method. 
The correlation of CDI score with the TIDE score, Dys-
function score and Exclusion score was analysed.

Statistical analysis
The statistical analysis in this research was conducted 
using R (version 4.2.2). The distribution normality for 
continuous variables was evaluated by Shapiro-Wilk test. 
If the continuous variables were normally distributed, 
they were compared by student’s t-test; otherwise Wil-
coxon ranked-sum test was conducted. In the differential 
expression analysis, we accounted for multiple testing by 
applying the Benjamini-Hochberg procedure to adjust 
the p-values. This method controls the false discovery 
rate (FDR), thereby reducing the likelihood of false posi-
tives. The adjusted p-values (q-values) were used to iden-
tify significantly differentially expressed genes (DEGs). P 
value < 0.05 (two sides) was considered as statistically sig-
nificant for all analysis.

Results
Identification of differentially expressed PCD genes in 
LUSC
The expression of PCD genes were compared between 
TCGA-LUSC tumor tissues and normal controls. Of 
these PCD genes, a total of 351 DEGs were identi-
fied, among which 176 were up-regulated and 175 were 

down-regulated (Fig. 1A and B). GO and KEGG revealed 
that the function of these DEGs were mainly enriched in 
regulating the apoptotic process, NF-kappa B signaling, 
ERK1/2 signaling, identical protein binding, lysosome, 
ferroptosis and pathways in cancer (Fig.  1C). These had 
indicated significant variations in the PCD genes expres-
sion profiles as well as their related biological functions 
in LUSC.

The STRING tool was employed to analyze the protein-
protein interactions of the DEGs identified in our study. 
The analysis revealed significant clusters, with the four 
model genes (FGA, GAB2, JUN, and CDKN2A) as indi-
cated in the next results section prominently situated 
within these clusters, underscoring their central roles 
in the network (Supplementary Figure S1A). Further 
validation was performed using Metascape and Gen-
eMANIA. Metascape results highlighted key signaling 
pathways, including those related to apoptosis, autoph-
agy, and ferroptosis, concentrated within the PPI net-
works (Supplementary Figure S1B). MCODE analysis of 
the PPI network identified nine critical clusters, with the 
four model genes acting as pivotal nodes (Supplemen-
tary Figure S1C). GeneMANIA analysis yielded similar 
conclusions, reinforcing the significance of our findings 
(Supplementary Figure S1D).

Development of the CDI score based on PCD model genes 
in predicting the prognosis of LUSC
The association between the DEGs and survival was eval-
uated by univariate COX regression, and 34 prognostic 
PCD genes were found to be significant (p < 0.05). Next, 
Lasso-penalized regression was performed to eliminate 
the potential collinearity effect (Fig.  2A and B). After-
wards, eight PCD genes were preserved and included 
in the multivariate COX analysis (FGA, FES, GAB2, 
CHEK2, GGCT, JUN, CTSV and CDKN2A). Finally, 
with a stepwise selection process, four PCD genes were 
identified as model genes, namely FGA, GAB2, JUN and 
CDKN2A. The HRs, 95% confidence intervals (CI) and 
P values of these four included PCD genes in the final 
multivariate COX model were shown in Fig. 2C. The con-
structed PCD signature was presented as a PCD model 
gene-expression level calculated CDI score using the 
following formula: CDI score = 0.0779 * FGA + 0.1619 * 
GAB2 + 0.1859 * JUN − 0.0504 * CDKN2A. LUSC patients 
that died during follow-up showed a significantly higher 
CDI score (Fig. 2D). The correlation of CDI with various 
clinical features such as gender, age and tumor stage were 
also depicted in Fig. 2D.

We further investigated the distribution of the four 
model genes in five cell types detected by single-cell 
sequencing in LUSC (Supplementary Figure s2). FGA 
showed relatively low overall expression, primarily local-
ized in epithelial cells. GAB2 was highly expressed not 

https://cibersortx.stanford.edu/
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only in epithelial cells but also in NK cells. JUN exhibited 
a high positive expression rate across the cell population, 
predominantly in T cells and NK cells, whereas CDKN2A 
was mainly expressed in another cluster of epithelial 
cells. The CDI for each single cell, calculated based on the 
expression levels of these four genes, was highest in NK 
cells, followed by T cells.

To further understand the biological status changes 
that are potentially related with CDI, GSVA analysis 
was performed to compare high- and low-CDI patients. 
High CDI and low CDI groups were defined based on 
the median CDI value calculated from the entire patient 
cohort. Patients with CDI values above the median were 

categorized into the high CDI group, while those below 
or equal to the median were categorized into the low 
CDI group. It was found that LUSC patients with higher 
CDI might be associated with activated pathways such 
as complement and coagulation cascades, PPAR signal-
ing, primary bile acid metabolism, etc. (Figure 2E and F). 
These have identified a prognostic signature composed 
of four key PCD genes (FGA, GAB2, JUN, CDKN2A) 
whose expression levels correlate with survival in LUSC, 
and further analysis suggests that higher CDI scores are 
associated with activation of pathways involved in coagu-
lation, lipid metabolism, and immune response.

Fig. 1 Differential Expression of PCD Genes in LUSC. (A) Heatmap illustrating the differential expression of PCD genes in TCGA-LUSC tumor tissues 
compared to normal controls. A total of 351 differentially expressed genes (DEGs) were identified, with 176 up-regulated (red) and 175 down-regulated 
(blue). (B) Volcano plot representing the fold change (log2) on the x-axis and the adjusted p-value (− log10) on the y-axis for the DEGs. The threshold 
for significance was set at |log2(fold change)| > 1.0 and adjusted p-value < 0.05. (C) Functional enrichment analysis of DEGs showing enriched biological 
themes, including gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These DEGs were primarily associated 
with regulating the apoptotic process, NF-kappa B signaling, ERK1/2 signaling, identical protein binding, lysosome, ferroptosis, and pathways in cancer. 
PCD - Programmed Cell Death; LUSC - Lung Squamous Cell Carcinoma; TCGA - The Cancer Genome Atlas
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Validation of the prognostic value of the CDI in LUSC 
patients
Kaplan-Meier curves of the high- and low-CDI patient 
groups exhibited a distinct dispersed pattern in both the 
TCGA and CPTAC cohorts with P value < 0.05 (Fig. 3A), 
and higher CDI was associated with a significantly worse 
survival outcome (Fig.  3B). The distribution of expres-
sion levels of each PCD model gene across different sur-
vival outcome groups was also consistent with their HRs 
(Fig. 2C and B). At 1-, 3- and 5-year of follow up time-
point, the CDI prediction obtained AUROC values of 
almost all > 0.8 (Fig.  3C), indicating robust predictive 

performance. In the TCGA-LUSC cohort, the 1-, 3-, 
and 5-year predictions align well with the actual out-
comes (Fig.  3D), demonstrating the performance of the 
CDI in predicting survival probabilities. However, in the 
CPTAC-LUSC cohort, the CDI slightly underestimates 
the 1-year and 3-year survival probabilities for patients 
with an actual prognosis close to 100%, predicting 
around 95–97% (Fig.  3E). Despite this, the predictions 
remain close to the actual outcomes. Additionally, all 
other point estimates have 95% confidence intervals (CIs) 
that cross the reference line, indicating a satisfactory fit 
overall. These findings highlight the efficacy of the CDI 

Fig. 2 Development of the CDI Score and Prognostic PCD Signature in LUSC. (A) and (B) Lasso penalty analysis was performed to select PCD genes and 
eliminate potential overfitting. (C) Forest plot illustrating the hazard ratios (HRs), 95% confidence intervals (CI), and p-values for the four selected PCD 
model genes (FGA, GAB2, JUN, and CDKN2A) in the final multivariate COX model. (D) Comparison of CDI scores between LUSC patients who died during 
follow-up and those who survived. (E) Gene Set Variation Analysis (GSVA) showing differences in biological functions between high-CDI and low-CDI 
patients. High-CDI patients exhibited activation of pathways such as complement and coagulation cascades and PPAR signaling. PCD - Programmed Cell 
Death; CDI - Cell Death Index; LUSC - Lung Squamous Cell Carcinoma; TCGA - The Cancer Genome Atlas
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Fig. 3 Validation of the Prognostic Value of the CDI Score in LUSC Patients. (A) Kaplan-Meier survival curves comparing high- and low-CDI patient groups 
in both the TCGA and CPTAC cohorts. (B) Higher CDI scores were associated with significantly worse survival outcomes. (C) Receiver operating character-
istic (ROC) curves at 1-, 3-, and 5-year follow-up timepoints, demonstrating the predictive performance of CDI. (D) and (E) Calibration curves comparing 
the predicted CDI outcomes with the observed results in the TCGA cohort. CDI - Cell Death Index; LUSC - Lung Squamous Cell Carcinoma; TCGA - The 
Cancer Genome Atlas; CPTAC - Clinical Proteomic Tumor Analysis Consortium
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in providing reliable survival predictions, although slight 
discrepancies in high-prognosis patients warrant further 
investigation.

Unsupervised consensus clustering by PCD model genes
The four PCD model genes were utilized to conduct 
consensus clustering among TCGA-LUSC patients to 
delineate distinct subtypes. As shown in Fig.  4A and B, 
we chose 3 as the k value since the relative change in 
area under CDF curve reduced to a remarkable low level 
when k > 3. Therefore, LUSC patients can be classified 
into three subsets which presented as different consensus 
clusters (Fig.  4C). It was observed that these three sub-
sets of LUSC patients had significantly varied results of 
survival rates (Fig.  4D). Cluster 2 had a notably higher 
proportion of patients with low CDI as well as a higher 
proportion of surviving patients (Fig.  4E). In brief, the 
consensus clustering of TCGA-LUSC patients based on 
the 4 PCD model genes revealed three distinct subtypes, 
each associated with varied survival rates and CDI levels, 
suggesting potential prognostic implications.

PCD genes mutation in high- and low-CDI patients
The mutation of PCD genes were assessed patients strati-
fied by high- and low-CDI levels. Figure  5A delineated 
the most distinct mutation of PCD genes between two 
groups with P of difference < 0.01. Among the four PCD 
model genes, only CDKN2A exhibited significant varia-
tion in mutation status between patients with high- and 
low-CDI levels with P < 0.01. We further investigated the 
four PCD model genes in terms of specific types of gene 
mutation. As shown in Fig.  5B, GAB2 and JUN showed 
minor missense mutation in low-CDI patients. FGA 
had minor nonsense mutation in high-CDI group. Con-
versely, CDKN2A had very significantly varied types of 
mutation between CDI groups, with low-CDI group had 
more quantity of mutations. More details of these muta-
tions are shown in Fig.  5C. The differential mutation 
patterns of PCD genes, particularly CDKN2A, suggest 
potential prognostic implications in LUSC based on CDI 
stratification.

CDI score associated with different immune status
Figure  6A illustrates the top 20 immune related genes, 
immune checkpoint genes and HLA genes that were 

Fig. 4 Unsupervised Consensus Clustering by PCD Model Genes. (A) and (B) Selection of the optimal number of clusters (k) based on the relative change 
in the area under the cumulative distribution function (CDF) curve. (C) Consensus clustering analysis using the four PCD model genes identified three 
distinct subsets of LUSC patients. (D) Survival rate differences among the three subsets of LUSC patients. (E) Proportion of low-CDI patients and survivors 
in each cluster. PCD - Programmed Cell Death; CDI - Cell Death Index; LUSC - Lung Squamous Cell Carcinoma
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Fig. 5 PCD Genes Mutation in High- and Low-CDI Patients. (A) Forest plot illustrating the most significantly differentially mutated PCD genes between 
high- and low-CDI patients. (B) Specific types of gene mutations in the four PCD model genes (FGA, GAB2, JUN, and CDKN2A) in relation to CDI groups. 
(C) Lollipop plot showing the location of mutations on the gene segments of CDKN2A in high-CDI and low-CDI groups. PCD - Programmed Cell Death; 
CDI - Cell Death Index
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most differently expressed in high- and low-CDI groups. 
The substantial alterations in the expression of immune-
related genes underscore marked variations in immune 
status. Subsequently, the proportion of immune infiltra-
tion was evaluated for 22 types of immune cells (Fig. 6B). 
In total, CD8 + T cells, activated CD4 + T memory cells 
and resting NK cells were significantly changed between 
high- and low-CDI groups (Fig.  6C). When handled as 
a continuous variable, CDI score was significantly posi-
tively related with the infiltration of naive B cells, resting 
CD4 + T memory cells, monocytes, and negatively related 
with the infiltration of CD8 + T cells, activated CD4 + T 
memory cells, resting NK cells, M1 macrophages and 
resting dendritic cells (Fig. 6D). These findings suggested 
that the differential expression of immune genes showed 
significant immune profile variations between CDI 
groups.

Estimate of response to chemotherapy, targeting drugs 
and immunotherapy based on CDI
Figure  7A depicted the top 10 drugs significantly asso-
ciated with CDI-predicted response to. Notably, sev-
eral EGFR-TKIs such as afatinib, erlotinib, gefitinib and 
osimertinib were included. Besides, among the four PCD 
model genes, the gene expression of FGA showed more 
significant relevance with these top 10 drugs, suggesting 

that gene FGA might contribute the most to drug resis-
tance in LUSC. We also evaluated several commonly 
used chemotherapeutic drugs as shown in Fig.  7B. The 
IC50 values of cisplatin and gemcitabine were not dif-
ferent in high- and low-CDI groups; while paclitaxel, 
docetaxel and vinorelbine had significantly higher IC50 
values in high-CDI group.

Regarding the prediction of immunotherapy, the high-
CDI group exhibited a significantly elevated TIDE scores 
(Fig. 7C), suggesting a higher likelihood of tumor immune 
evasion and reduced potential benefit from immuno-
therapy. Furthermore, while the dysfunction scores were 
higher, the exclusion scores were lower in high-CDI 
group, implying that the immune evasion of LUSC tumor 
cells in high-CDI patients may be predominantly stem 
from T cell dysfunction. Overall, the high expression of 
FGA in LUSC correlates significantly with resistance to 
EGFR-TKIs, suggesting its pivotal role in drug resistance. 
Additionally, high CDI predicts reduced efficacy of pacli-
taxel, docetaxel, and vinorelbine, and indicates poorer 
immunotherapy outcomes due to increased TIDE scores 
and T cell dysfunction.

Fig. 6 CDI Score Associated with Different Immune Status. (A) Top 20 differentially expressed immune-related genes, immune checkpoint genes, and 
HLA genes between high- and low-CDI groups. B) Proportion of immune infiltration for 22 types of immune cells in high- and low-CDI groups. (C) Signifi-
cantly altered immune cell subsets between high- and low-CDI groups. (D) Correlation between CDI score and immune cell infiltration. CDI - Cell Death 
Index; HLA - Human Leukocyte Antigen
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Discussion
This study has demonstrated a significantly altered 
gene expression pattern of twelve types of programmed 
cell death in LUSC, based on which a cell death index 
related with the prognosis was further developed. The 
CDI included four critical PCD genes which showed 
specific mutation patterns, and was correlated with sev-
eral immunocytes that were related with tumor immune 
microenvironment. The constructed CDI shows signifi-
cant associations with the sensitivity to multiple com-
monly used drugs such as chemotherapy and targeting 
drugs in LUSCpatients. The level of CDI also featured the 
potential to predict patient responses to immunotherapy. 
Our study underscores the pivotal role of PCD model 
genes in LUSC prognosis and highlights the CDI’s prom-
ise in guiding the selection of appropriate therapies for 
sensitive patients.

A total of four PCD genes (FGA, GAB2, JUN and 
CDKN2A) were included in the prognostic model. These 
four genes are related with apoptosis (FGA and JUN), 
lysosome-dependent cell death (GAB2) and cupropto-
sis (CDKN2A). FGA, the gene encoding the alpha com-
ponent of fibrinogen, plays a crucial role in blood clot 
formation following vascular injury [23]. In the context 
of LUSC, FGA has been implicated in tumor growth 
and metastasis. A recent study using CRISPR/Cas9 to 
knock out FGA in human lung cancer cell lines demon-
strated increased cell proliferation, migration, and inva-
sion, accompanied by a reduction in epithelial markers 
such as E-cadherin [24]. This knockout also promoted 
tumor growth and metastasis in vivo through the integ-
rin-AKT signaling pathway, highlighting FGA’s potential 
role in LUSC progression [24]. GAB2 is a member of the 
GRB2-associated binding protein family, known for its 
role in signal transduction through cytokine and growth 

Fig. 7 Estimate of Response to Chemotherapy, Targeted Drugs, and Immunotherapy Based on CDI. (A) Top 10 drugs with predicted responses signifi-
cantly related to CDI scores, including several EGFR-TKIs. (B) Evaluation of the sensitivity to commonly used chemotherapeutic drugs in high- and low-CDI 
groups. (C) TIDE score, Dysfunction score, and Exclusion score indicating the response to immunotherapy in high-CDI and low-CDI groups. CDI - Cell 
Death Index; EGFR-TKIs - Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors; TIDE - Tumor Immune Dysfunction and Exclusion
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factor receptors. GAB2 has been identified as a key acti-
vator of the phosphatidylinositol-3 kinase (PI3K) path-
way in response to various stimuli [25]. In LUSC, GAB2 
has been linked to tumor progression through its regu-
lation by non-coding RNAs, particularly SNORA38B. 
SNORA38B has been shown to enhance GAB2 expres-
sion, thereby activating the AKT/mTOR pathway, which 
promotes cell proliferation, migration, and invasion while 
inhibiting apoptosis [26]. Furthermore, SNORA38B-
mediated GAB2 activation also contributes to an immu-
nosuppressive tumor microenvironment, which can 
reduce the efficacy of immune checkpoint blockade ther-
apies [26]. The JUN gene encodes a protein that interacts 
with specific DNA sequences to regulate gene expression, 
and it is a putative transforming gene of avian sarcoma 
virus 17 [27]. In LUSC, JUN plays a significant role in 
the tumor microenvironment, particularly in response 
to PD-1/PD-L1 blockade immunotherapy. JUN has been 
identified as a biomarker of response to PD-1 blockade 
therapy. Re-analysis of single-cell RNA sequencing data 
from lung adenocarcinoma patients undergoing PD-1 
blockade revealed that JUN expression is associated with 
the presence of non-exhausted CD8 + T cells, which are 
critical for effective anti-tumor immunity [28]. These 
findings suggest that JUN may influence the effective-
ness of PD-1 blockade therapy in LUSC by modulating 
the tumor microenvironment. CDKN2A generates mul-
tiple transcript variants encoding proteins that function 
as inhibitors of CDK4 kinase, playing a crucial role in 
cell cycle regulation. Loss-of-function (LOF) mutations 
in CDKN2A have been associated with poor progno-
sis in LUSC. A study involving patients with advanced 
NSCLC who underwent next-generation sequencing 
prior to immune checkpoint blockade therapy found that 
CDKN2A LOF was linked to inferior progression-free 
survival and OS [29]. This negative impact was observed 
even in patients with high TMB and high PD-L1 expres-
sion, suggesting that CDKN2A LOF tumors are more 
likely to progress following immunotherapy [29]. These 
findings highlight the potential of CDKN2A as a thera-
peutic target and a prognostic marker in LUSC.

Lysosome-dependent cell death is characterized by 
the destabilization of lysosomal and has recently been 
recognized as a subtype of programmed cell death [30]. 
Given that many types of tumors, including LUSC, 
exhibit rapid cell proliferation and heightened cell sur-
vival processes in response to cellular injury, multiple 
transformation-related alterations at the level of the 
lysosome help to keep the cells against lysosome-depen-
dent cell death. However, the contrary impact is also 
discovered, where cancer cells may exploit the stability 
of lysosome to enhance their carcinogenesis potential 
and invasiveness [31]. Therefore, it is crucial to investi-
gate the intricate modulation of lysosomal membrane 

permeabilization in tumor cells for pharmacologically 
targeting lysosome-dependent cell death for therapeutic 
purposes. Our study reveals that GAB2 is an independent 
risk factor (HR = 1.176, P = 0.03) for the survival of LUSC 
patients. Additionally, GAB2 can be regulated by the 
small nucleolar RNA, SNORA38B, which is upregulated 
in NSCLC cells and correlates with a poor prognosis 
[26]. SNORA38B promotes GAB2 transcription, thereby 
activating protein kinase B (AKT)/mammalian target 
of rapamycin (mTOR) pathway through directly bind-
ing with E2F1, thus enhancing NSCLC progression. The 
SNORA38B/GAB2/AKT/mTOR pathway is also associ-
ated in the recruitment of CD4 + FOXP3 + regulatory T 
cells by stimulating the secretion of interleukin 10 by can-
cer cells, thus inhibiting the infiltration of CD3 + CD8 + T 
cells in the LUSC tumor microenvironment, and further 
facilitating cancer cells proliferation and worse immune 
efficacy. Consequently, the PCD genes identified in the 
current study represent novel markers and potential ther-
apeutic targets, which should be validated in the future 
research of LUSC.

To further elucidate the clinical utility of the CDI, 
specific implementation steps could involve the integra-
tion of CDI assessment into routine clinical workflows 
for LUSC patients. Notably, the CDI is derived from 
the expression levels of only four genes, which makes it 
a potentially cost-effective tool for clinical application. 
Following initial diagnosis, the CDI could be calculated 
using gene expression profiling of biopsy samples. This 
molecular-level prognostic tool could be used along-
side traditional clinical factors such as age, gender, and 
tumor stage to stratify patients into different risk catego-
ries. High CDI scores might indicate a higher likelihood 
of response to specific therapies such as chemotherapy, 
targeted therapy, or immunotherapy. Conversely, patients 
with low CDI scores could be considered for alterna-
tive therapeutic strategies or enrollment in clinical trials 
investigating novel treatments. The use of CDI is analo-
gous to the COVID-19 critical illness prediction model 
developed during the pandemic [32]. Similar to how the 
COVID-19 risk score uses a few simple parameters mul-
tiplied by coefficients to predict the risk of critical illness, 
CDI uses gene expression data to estimate the future 
risk of specific outcomes, guiding clinical decisions and 
enabling personalized interventions. Future work should 
focus on conducting prospective clinical trials to validate 
the predictive accuracy of CDI in diverse patient cohorts 
and to develop standardized protocols for its clinical 
application. Moreover, case studies illustrating success-
ful application of CDI-guided treatment decisions could 
provide valuable insights and further substantiate its clin-
ical relevance.

There are several limitations of this study. The prognos-
tic performance of the CDI constructed in the current 
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study has not yet been further evaluated by combining 
with clinical factors such as age, gender, tumor stage, etc. 
A nomogram containing CDI and certain critical clini-
cal factors might be of help to predict patient survival. 
Our study cohort for LUSC is relatively small compared 
to other tumor types, which may limit the robustness 
of certain data analyses, such as in identifying differen-
tially expressed genes (DEGs). The smaller sample size 
increases the risk that potentially significant genes may 
not reach statistical significance in our analysis. Addi-
tionally, our reliance on publicly available databases such 
as TCGA and CPTAC introduces inherent limitations 
including the potential for selection bias due to ambigu-
ous patient selection criteria and geographical variabil-
ity in genetic predispositions. Lastly, the lack of in vivo 
and in vitro experiments is a major limitation, and the 
impact of the core genes such as CDKN2A on the onco-
logical phenotype of lung squamous carcinoma should be 
addressed in future research endeavors.

In conclusion, this study has showed a significantly 
altered gene expression pattern in PCD in LUSC, lead-
ing to the development of a prognostic CDI. The CDI, 
comprising four key PCD genes (FGA, GAB2, JUN, and 
CDKN2A), correlates strongly with LUSC prognosis, 
immune cell infiltration, and drug sensitivity to chemo-
therapy, targeted therapy, and immunotherapy. Notably, 
CDI has potential clinical utility in predicting treatment 
responses and aiding in the selection of appropriate ther-
apies for LUSC patients. Future studies are needed to fur-
ther validate the prognostic value of CDI in combination 
with clinical factors and explore its application in diverse 
patient cohorts.
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