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Abstract
Background Radiomics has shown promise in the diagnosis and prognosis of lung cancer. Here, we investigated 
the performance of computed tomography-based radiomic features, extracted from gross tumor volume (GTV), 
peritumoral volume (PTV), and GTV + PTV (GPTV), for predicting the pathological invasiveness of pure ground-glass 
nodules present in lung adenocarcinoma.

Methods This was a retrospective, cross-sectional, bicentric study with data collected from January 1, 2018, to June 1, 
2022. We divided the dataset into a training cohort (n = 88) from one center and an external validation cohort (n = 59) 
from another center. Radiomic signatures (rad-scores) were obtained after features were selected through correlation 
and least absolute shrinkage and selection operator analysis. Three machine learning models, a support vector 
machine model, a random forest model, and a generalized linear model, were then applied to build radiomic models.

Results Invasive adenocarcinoma had a higher rad-score (P<0.001) in the GTV and GPTV. The area under the curves 
(AUC) of GTV, PTV, and GPTV were 0.839, 0.809, and 0.855 in the training cohort and 0.755, 0.777, and 0.801 in the 
external validation cohort, respectively. The GPTV model had higher AUCs for predicting pathological invasiveness. 
The random forest model had the best validity and fit for the proposed machine learning approach, suggesting that it 
may be the most appropriate model.
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Background
With the development of computed tomography (CT) 
and widespread use of lung cancer screening programs, 
early-stage lung adenocarcinomas manifesting as ground-
glass nodules (GGNs) are more commonly detected [1, 
2]. Among these, pure ground-glass nodules (pGGNs) are 
defined as focal nodular areas of increased lung attenu-
ation seen on high-resolution CT, revealing the pulmo-
nary vessels and bronchial structures [3, 4]. pGGNs are 
regarded as indolent lung adenocarcinoma, which is 
inextricably linked with a pathological predominant lep-
idic growth [5]. In contrast, 16–27% of pGGNs are patho-
logically diagnosed with invasive adenocarcinoma (IAC), 
and lobectomy is recommended in these cases [6–8]. 
Occasionally, the results of radiologic assessments (such 
as CT attenuation value, tumor size, and morphological 
characteristics) may conflict with pathological findings, 
which are regarded as the “gold standards” of diagno-
sis and typically guide treatment protocols [3, 4, 9, 10]. 
Therefore, it is imperative to develop new diagnostic 
methods with comprehensive and critical information 
that could improve diagnostic efficiency.

Radiomics refers to the analysis of large volumes of 
quantitative data extracted from medical images and has 
shown promising potential in the diagnosis and prog-
nosis of lung cancer [11, 12]. Previous studies have pri-
marily focused on radiomic features within intratumoral 
regions, often overlooking the peritumoral parenchyma 
[13, 14]. The investigation of peritumoral radiomic fea-
tures has garnered increasing attention due to their 
potential to capture microenvironmental changes in 
the peritumoral area, which are common attributes of 
malignancies. Furthermore, the presence of necrotic or 
hypoxic regions within the central tumor, coupled with 
predominant cancer cell proliferation in the peripheral 
tumor, underscores the importance of analyzing peritu-
moral features [15, 16]. Nagy et al. recently showed that 
5-mm peritumoral radiomics can improve the differen-
tiation of adenocarcinoma from granulomas [17]. How-
ever, the diagnostic usefulness of peripheral radiomic 
features for lung adenocarcinoma presenting with GGNs 
has not been sufficiently explored. Therefore, in this 
study, we extracted radiomic features from the intra-
tumoral and 5-mm peritumoral regions and applied 
advanced machine learning approaches. We aimed to 
assess the performance of radiomic features extracted 
from these regions in predicting pathological invasive-
ness in patients with pGGNs. The primary objective of 
this study was to identify a new diagnostic biomarker 

capable of accurately predicting the invasiveness of ade-
nocarcinoma on chest CT, thereby providing scientific 
evidence to support clinical decision-making.

Methods
Study cohort
This bicentric retrospective study was reviewed and 
approved by the ethics committee of the researchers’ 
hospital. The study adhered to the principles outlined in 
the Declaration of Helsinki and received approval from 
the Ethics Committees of the participating hospitals (ref-
erence numbers: KY2020147 from The Affiliated Hos-
pital of Southwest Medical University and 2021-07-009 
from Xiangtan Central Hospital). Given the retrospective 
nature of the study and the use of anonymized data, the 
requirement for informed consent was waived.

The retrospective study involving two centers (The 
Affiliated Hospital of Southwest Medical University as 
center 1, Xiangtan Central Hospital as center 2) was con-
ducted from January 1, 2018 to June 1, 2022. All patients 
whose data was included in the study had undergone a 
CT scan and surgery. The patients included in this study 
were required to meet the following criteria: (1) aged 18 
years or older; (2) underwent CT scan and subsequent 
thoracic surgery; (3) had a radiological diagnosis of pure 
ground glass nodules (pGGNs) on CT imaging; (4) post-
operative pathological diagnosis confirmed invasive ade-
nocarcinoma; (5) non-contrast, thin-section chest CT 
performed within 14 days before surgery; (6) no preoper-
ative chemotherapy, radiotherapy, or chemoradiation; (7) 
absence of concurrent chronic systemic diseases or other 
malignancies; and (8) satisfactory quality of the thoracic 
CT images. Notably, Patients diagnosed with multiple 
primary lung adenocarcinomas based on postoperative 
pathology of multiple pGGNs were excluded from the 
study. A total of 147 patients matched our search criteria. 
Patients enrolled from center 1 were used as the training 
cohort (n = 88), while those enrolled from center 2 served 
as the validation cohort (n = 59). The study flowchart is 
presented in Fig. 1.

CT protocol
A series of thin-slice CT scans were performed by dif-
ferent manufacturers using different numbers of detec-
tors, without contrast enhancement, from the apex to 
the base of the lung. CT scanning was performed using a 
64- or 128-slice spiral CT scanner (either Revolution CT 
[GE Healthcare, Chicago, IL, USA] or MX16 CT [Philips 
Healthcare, Best, Netherlands] at center 1; uCT550 or 

Conclusions GPTV had the highest diagnostic efficiency for predicting pathological invasiveness in patients with 
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uCT760 [Shanghai United Imaging Healthcare, Shang-
hai, China] at center 2). For chest CT examination, the 
following scanning parameters were used: detector col-
limation, 1–5  mm; beam pitch, 0.75–1.75  mm, 45  keV 
voltage, 150 mA current, 256 × 512 frames, 500 µs expo-
sure time, and 256 × 512 frame resolution. Reconstructed 
images had a section thickness of 0.625–1.250  mm and 
were displayed at 1600 HU, 600 HU, 350 HU, and 35 HU 
window levels in lung and mediastinal anatomy.

Segmentation and feature extraction
All images in this study were manually segmented using 
ITK-SNAP software (www.itksnap.org) [18]. The regions 
of interest (ROIs) were delineated along the nodule 
boundary on the CT images in horizontal planes by a 
radiologist specializing in unenhanced chest CT, ensur-
ing that the entire gross tumor volume (GTV) was cov-
ered. Following this, another radiologist in the same field 
reviewed and adjusted the lesion delineation as necessary 
for quality control. The peritumoral volume (PTV) ROI 
was defined as the region extending 5 mm outward from 
the edge of the tumor, while excluding soft tissues such as 
the chest wall and mediastinum surrounding the tumor 
[17].

The radiomic features were extracted from GTV and 
GPTV using the Pyradiomics tool version 3.0, an open-
source Python package designed for this purpose. Prior 
to extract features, all images resampled at a spatial reso-
lution of 1 × 1 × 1 mm3 and were normalized by calculat-
ing their z-scores [(x - µ)/σ], where x denotes the feature 
value, µ represents the average of feature values among all 
patients and σ is the corresponding standard deviation. 
The analysis comprised of first-order and intensity histo-
gram statistics, shape-based features, texture features like 
gray-level dependence matrix and gray-level size zone 
matrix, and wavelet-based features [19]. Figure  2 illus-
trates the flowchart for constructing the radiomic model, 

encompassing the stages of image selection, image seg-
mentation, feature extraction, feature engineering, as 
well as model construction and validation.

Dimension reduction was performed using correla-
tion and least absolute shrinkage and selection opera-
tor (LASSO) analysis. Pearson correlation analysis was 
employed for datasets exhibiting normal distribution, 
whereas Spearman correlation analysis was utilized for 
datasets with non-normal distribution. Radiomic features 
demonstrating a correlation coefficient (r) exceeding 0.9 
were considered highly correlated, leading to the ran-
dom exclusion of one of the correlated features [20]. To 
determine the optimal radiomics signature, the LASSO, 
a method demonstrated to be effective in the regression 
analysis of high-dimensional data, was employed. The 
radiomics features selected through this process were 
subsequently utilized as inputs for machine learning 
algorithms in the classification task.

Pathological evaluation
Surgically resected GGN specimens were histopatho-
logically analyzed by an experienced thoracic pathologist 
according to the revised lung adenocarcinoma (IASLC/
ATS/ERS) classification of 2011 [21]. Adenomatous 
hyperplasia (AAH), adenocarcinomas in situ (AISs), 
minimally invasive adenocarcinomas (MIAs), and IACs 
were classified according to the new system. AAH, AIS, 
and MIA are non-invasive adenocarcinomas (non-IAC), 
while other types of tumors are IACs.

Statistical analysis
To evaluate the differences in rad-scores between the 
IAC and non-IAC groups, the study employed both the 
Student’s t-test and the Mann–Whitney U test. Addi-
tionally, receiver operating characteristic (ROC) curves 
were generated, and the corresponding area under the 
curve (AUC) was calculated to assess the diagnostic 

Fig. 1 The diagram below illustrates the study protocol flow for two separate centers. It also includes the inclusion and exclusion criteria for participants 
at each center
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performance of the rad-score. A p-value of less than 0.05 
was considered statistically significant. To understand 
feature importance, we utilized various machine learn-
ing models, including a support vector machine model 
(SVM), a random forest model (RF), and a generalized 
linear model (GLM). Furthermore, we employed Grid-
Search cross-validation (CV), a comprehensive approach 
that systematically evaluates multiple parameter 

combinations, with the final selection of hyperparam-
eters based on five-fold CV.

Subsequently, the R package DALEX was applied to 
explain the three machine learning approaches, and 
residual distribution was plotted to determine the best 
model in respect to the validation cohort. In addition, we 
examined the relative importance of the explanatory fea-
tures for further study.

Results
Patient characteristics
Our study included 147 patients with pGGNs, 44 
(29.93%) men and 103 (70.07%) women (age range, 29–78 
years; median age, 56.0 years). Of the 147 cases of lung 
adenocarcinomas, there were 64 IACs (43.53%), 60 MIAs 
(40.82%), and 23 AISs (15.65%). The training and valida-
tion cohorts did not differ significantly in baseline char-
acteristics (Table 1).

Feature selection and development of the radiomic 
model.

We extracted 1,222 texture features from the GTV 
and GPTV. As a result of removal of redundant features 
based on a correlation coefficient > 0.9, 256 features from 
GTV, 257 from PTV, and 240 from GPTV were retained.

Afterward, we used LASSO to further reduce the 
dimensionality of screened features, and a linear com-
bination of the selected features and their coefficients 
was generated for the rad-score. The rad-scores for the 

Table 1 Baseline data for the training and validation cohort
Variables Training co-

hort (N = 88)
Validation co-
hort (N = 59)

p-
val-
ue

Sex: 0.499
 Male 24 (27.3%) 20 (33.9%)
 Female 64 (72.7%) 39 (66.1%)
Age: 55.1 (10.4) 54.6 (13.1) 0.805
Location: 0.026
Right upper lobe 34 (38.6%) 17 (28.8%)
Right lower lobe 9 (10.2%) 15 (25.4%)
Right middle lung 8 (9.09%) 4 (6.78%)
Left upper lung 33 (37.5%) 15 (25.4%)
Left lower lobe 4 (4.55%) 8 (13.6%)
Pathology: 0.783
Non-IAC 51 (58.0%) 32 (54.2%)
IAC 37 (42.0%) 27 (45.8%)
Diameter (mm) 36.9 ± 7.01 36.7 ± 6.69 0.875
Abbreviation: IAC, invasive adenocarcinoma

Fig. 2 Workflow of radiomics analysis, including segmentation, feature extraction, feature selection, model building, and model evaluation
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GTV, PTV, and GPTV radiomic models derived from 
IACs were marginally higher than those derived from 
non-IACs, in both the training and the validation cohort 
(P<0.05) (Fig. 3).

Performance and comparison
The GPTV model demonstrated superior performance 
compared to the GTV model, as evidenced by the AUC 
values. Specifically, the GPTV model achieved AUCs of 
0.855 (95% CI: 0.838–0.872) and 0.801 (95% CI: 0.719–
0.902) in the training and validation cohorts, respectively. 
In contrast, the GTV model yielded AUCs of 0.838 (95% 

CI: 0.821–0.873) and 0.755 (95% CI: 0.729–0.768) in the 
corresponding cohorts (Fig.  4A-B). A summary of diag-
nostic performance is provided in Table 2.

Machine learning approach
The IAC diagnostic model was developed using three 
machine learning approaches based on GPTV radiomic 
features: SVM, RF, and GLM. To determine the best 
model selection in the validation cohort, we visualized 
the residual distribution. Figure  5(A-B) illustrate that 
the RF model had the least sample residuals, suggest-
ing that it had the minimal loss function and therefore 

Table 2 Diagnostic efficiency of GTV, PTV, and GPTV across training and validation cohort
Radiomic models Area under curve(95%CI) Accuracy Sensitivity Specificity Positive predictive value Negative predictive value
Training cohort
 GTV 0.838(0.821–0.873) 80.68% 83.80% 78.40% 73.80% 87.00%
 PTV 0.809(0.792–0.826) 72.72% 85.40% 63.80% 67.30% 83.30%
 GPTV 0.855(0.838–0.872) 81.68% 75.70% 84.30% 77.80% 77.80%
Validation cohort
 GTV 0.755(0.729–0.768) 72.88% 77.80% 68.80% 67.70% 78.60%
 PTV 0.777(0.701–0.812) 74.58% 78.30% 72.20% 64.30% 83.90%
 GPTV 0.801(0.719–0.902) 81.36% 75.70% 84.30% 77.80% 82.70%
Abbreviation: GTV, gross tumor volume; PTV, peritumoral volumes; GPTV, GTV + PTV; CI: confidence intervals

Fig. 4 Receiver operating characteristic (ROC) curve for the GTV, and GPTV radiomic models differentiating IAC from non-IAC, the GPTV radiomics model 
demonstrated higher performance

 

Fig. 3 The violin plot displays the Rad-score of GTV, PTV, and GPTV radiomic models used to differentiate IAC from non-IAC in both the training and 
validation cohorts. The Rad-score derived from IACs was marginally higher than that obtained from non-IACs
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outperformed the other models tested in predicting IAC. 
Furthermore, we included ROC curve analysis (Fig. 6) for 
evaluating diagnostic effectiveness across GLM, RF, and 
SVM model. The results revealed that RF had the high-
est area under the curve (0.815), followed by SVM (0.789) 
and GLM (0.781). These findings validate RF as the top-
performing model for diagnostic accuracy. Subsequently, 
we ranked seven explanatory variables according to their 
relative importance in the RF model (Fig. 7).

Discussion
In this study, we developed a GTV, PTV, and GPTV 
radiomic model, cross-validated all three with an exter-
nal center, and compared the diagnostic efficiency of the 
different models in differentiating IAC from non-IAC in 
the training and validation cohorts. Our results show that 
GPTV had the best diagnostic efficiency in predicting 
pathological invasiveness in patients with pGGNs. Based 
on this finding, we developed the IAC diagnostic model 
using three machine learning approaches.

Persistent pGGNs are usually considered an “indolent” 
type of lung adenocarcinoma, with annual or biennial 
CT follow-up recommended as a management approach 
[5]. Approximately 16–27% of pGGNs are pathologically 
diagnosed with IAC, and some radiographical signs, such 
as pleural invasion, spiculation lobulation, the notch sign, 
and bubble-like sign, are associated with pathological 
invasiveness [22–24]. The interpretation of these char-
acteristics, however, is prone to inter- and intra-observer 
variability based on the experience and expertise level of 
the radiologist [24].

Radiomic features have the potential to provide pheno-
typic information through high-throughput algorithms, 
describing additional tumor characteristics that may go 
unnoticed by radiologists. This potential impact on the 
clinical management of lung adenocarcinoma lies in the 
utilization of intranodular and perinodular radiomic fea-
tures. These features can enhance diagnostic accuracy, 
prognostic stratification, treatment selection, and ther-
apy monitoring [24]. Intratumoral radiomic features have 
shown promising potential in differentiating IACs from 
non-IACs, which is consistent with the result of the cur-
rent study [13, 14]. In recent years, peritumoral radiomic 
features have gradually gained attention as a burgeoning 
biomarker of the radiomics method. Nagy et al. showed 

Fig. 6 Receiver operating characteristic (ROC) curve analysis was con-
ducted to evaluate the performance of the radiomics model built using 
the generalized linear model (GLM), random forest (RF), and support vec-
tor machine (SVM) approaches

 

Fig. 5 Construction and assessment of the generalized linear model (GLM), random forest (RF), and support vector machine (SVM) models were con-
ducted. The cumulative residual distribution map the sample was shown in (A), while the residuals of the sample were presented in the boxplots in (B). 
The red dot in the boxplots represented the root mean square of residuals
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that 5-mm peritumoral radiomics can increase efficiency 
in differentiating adenocarcinoma from granulomas 
(intranodular radiomic vs. perinodular radiomic: 0.75 
vs. 0.80) [17]. Das et al. [25] found that the integration 
of GPTV further improved the discriminatory ability for 
predicting lymph node involvement in cT1N0M0 lung 
adenocarcinomas (GPTV vs. GTV vs. PTV: 0.75 vs. 0.74 
vs. 0.72). Wu et al. [26] indicated that the peritumoral 
parenchymal region within 5 mm of the tumor contained 
useful information that could predict the pathologi-
cal invasiveness of lung adenocarcinoma manifesting as 
pGGNs. Based on the results of the above-mentioned 
studies, the integration of GTV and 5-mm PTV was 
applied in the present study. We discovered that patients 
diagnosed with IAC generally had a significantly higher 
rad-score than those not diagnosed with IAC; the same 
result was confirmed in the validation cohort. Further-
more, among the various radiomic models, GPTV dem-
onstrated the highest diagnostic efficiency. This finding 
suggests that incorporating radiomic features extracted 
from both the intratumoral and peritumoral regions can 
supplement tumor-based features by capturing additional 
information about the microenvironment of surround-
ing tissues, such as tissue density, heterogeneity, and 
vascularity. These captured features may reflect crucial 
biological processes like tumor infiltration, angiogenesis, 
and inflammation, which have implications for clinical 

outcomes and treatment response. Therefore, integrat-
ing peritumoral features into a radiomic model has the 
potential to enhance diagnostic efficiency.

Owing to GPTV having the highest diagnostic effi-
ciency, the IAC diagnostic model was developed using 
three machine learning approaches based on GPTV 
radiomic features. When integrated into machine learn-
ing, GPTV radiomic features can reduce data require-
ments, increase reliability, and improve the reliability and 
robustness of machine learning systems. In this study, 
the RF model outperformed the other models in terms of 
machine learning and the relative importance of explana-
tory variables.

However, this study has some limitations. First, due 
to the bicentric retrospective design employed. Varia-
tions in CT scanning protocols, differences in image 
quality, and demographic disparities between the two 
centers could lead to variability in the results and limit 
their generalizability to other clinical populations and 
healthcare settings. Second, ROI demarcation was per-
formed visually and by manual delineation in several 
steps, which could have led to interobserver variability, 
limiting its clinical usefulness. Third, owing to the ret-
rospective nature of the study, there were limitations to 
the data we were able to collect. Therefore, multicenter 
studies are needed to improve the database needed to 
train the artificial intelligence system in the future to 

Fig. 7 The relative importance of explanatory variables in the generalized linear model (GLM), random forest (RF), and support vector machine (SVM) 
models were assessed, with each model providing an importance ranking for the identified radiomics features
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prevent selection bias. Finally, the utilization of GPTV 
models in clinical practice holds potential benefits such 
as improved patient outcomes, reduced healthcare costs, 
and increased efficiency. However, it is important to con-
duct further studies to confirm the clinical utility of the 
model and assess its impact on patient outcomes. This 
will provide a more comprehensive understanding of its 
potential implications.

Conclusion
In conclusion, the integration of GTV and PTV increases 
the performance of both in predicting the pathologi-
cal invasiveness of lung adenocarcinoma manifesting as 
pGGNs. This study underscores the importance of con-
sidering radiomic features from both intratumoral and 
peritumoral regions in distinguishing pathological inva-
siveness. Furthermore, our findings indicate that the RF 
machine learning approach is a reliable, practical, and 
cost-effective tool for the individualized management of 
pGGNs.
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